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Abstract

Stable autoregressive (AR) and autoregressive moving average (ARMA)

processes belong to the class of stationary linear time series. A linear

time series is Gaussian if the distribution of the

independent innovations (e(t)) is normal. Assuming that Ee(t) - 0, som of

the third order cumulantsc (m,n) - Ex(t)x(t4 )x(t+n) will be non-zer f

the e(t) are not normal and E43(t) * 0. If the relationship between (x(t))

and W0(t)} is non-linear, then {x(t)) is non-Gaussian even if the e(t) are

normal.. This paper presents a simple estimator of the bispectrum, the

Fourier transform of {c x (m,n)}. This sample bispectrum is used to

construct a statistic to test whether the bispectrum of {x(t)} is non-zero.

A rejection of the null hypothesis implies a rejection of the hypothesis

Ithat (x(t)) is Gaussian. A related test statistic is then presented for

testing the hypothesis that {x(t)) is linear. The asymptotic properties of

the sample bispectrum are incorp rated in these test statistics. The tests

are consistent as the sample size N+-.
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Testing for Gaussianity and Linearity of a
Stationary Time Series

Melvin J. Hinich
Virginia Tech

1. Introduction

Time series data from a variety of sources are often analyzed under

the explicit or implicit assumption that they are generated by

autoregressive (AR) or autoregressive moving average (ARMA) processes.

These processes are finite parameter linear stationary stochastic

processes. The tth element of a causal linear processes (x(t)) is of the

form

x(t) - - h(s)e(t-s), (1.1)
s-O

where the c(t) are independent identically distributed random innovations

with Ec(t) - 0. In filter theory terminology, the stationary process

{c(t)} is the input to a time invariant linear filter whose impulse

response is (h(t): t - 0, 1,...). If Zt.Oh2(t) < -, the covariance

function of the stationary output process (x(t)} is finite. If the input

is Gaussian, then the output is Gaussian and its covariance function

completely determines the joint distributions of the process.

But suppose that the c(t) are not normal and U3 w E 3(t) * 0. Then

the third order cumulant cxxx(m,n) - Ex(t)x(t4+)x(t+n) * 0 for many

values of m and n. The same is true if {x(t)} is generated by a

nonlinear filtering operation satisfies a Volterra functional expansion

(Brillinger, Sec. 2.10, 1975). Nonlinear models are beginning to play a
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role in applied time series. An overview of nonlinear models is given by

Priestley (1980).

Using an estimator of the bispectrum of {x(t)} Subba Rao and Gabr

(1980) present tests for whether the process is Gaussian and whether it

is linear. They do not use the asymptotic variance of the sample

bispectrum in their multivariate procedures, which is reasonable for

smallish sample sizes. This paper presents a modification of their

approach that makes heavy use of che large sample properties of the

sample bispectrum. Let us begin with a brief review of the bispectrum of

a stationary zero-mean process.

2. The Bispectrum

The bispectrum B(wlw 2 ) gives a measure of the multiplicative

nonlinear interaction of frequency components in (x(t)} (Hasselman ec

al., 1963). For a real stationary time series with Ex(t) - 0, the

bispectrum is defined as follows:

Bx(wlw2) - c cxxx(m,n)exp[-i(wlm + w2n)j, (2.1)
m--e no-

assuming that Icxxx(m,n)I is summable. Given the symmetries of

Bx(wl ,2), its principle domain is the triangular set a - (0 4 w, 4 v,

w2 C W1' 2wl + w2 C 27r} (Van Ness 1966). The area of this triangle is

2/3 of the area of the triangle {0 1 < 'C, w2 C w I "

If {x(t)) is linear, then

BX(wl, 2 ) - 43H(w1 )H(w2)H*(w 14w2) (2.2)
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where H(w) Jt.oh(t)exp(-iwt) is the filter transfer function and the

star denotes complex conjugate (Brillinger, 1965). Thus if P3"E
3(t)*O,

then Bx(w 1 lw2) ' 0.

The finite Fourier transform of a sample (x(O), x(1),..., x(N-1)) of

the process can be used to construct a consistent estimator of the

bispectrum. Let w. 2wn/N for n - 0, 1,..., N-i. For each pair of

integers j and k, define

F(j,k) - N-'X(wj)X( w ))X ( wj + ) ,  (2.3)

where

N-1X(wj)- I x(t)exp(-iwt).

t-0

Since x(wj+ N) - X(wj) and X(wN_j) - X*C(W), the principal domain of

F(j,k) is the triangular grid D - {0 < j e N/2, 0 < k 4 J, 2j + k c N)

(let N be even).

Set X(O) - 0, which is equivalent to subtracting the sample mean

from the data. Thus F(j,0) - F(O,k) = 0. Given a summability condition

for the cumulants of {x(t)), it follows from expression (4.3.15) in

Brillinger (1975) that

E[F(J,k)Il - Lx(Wj, wk) + O(N-1 ), (2.4)

and the complex variance is

ISubba Rao-Gabr use the standard windowed sample covariance method.

- - - --. '
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E F Q,k) - 1 (Wj, Wk)1 2 = NSX(Wj)Sx(Wk)Sx(Wj.+) (2.5)

[1 + S(J-k) + 6(N-2j-k) + 44(N-3j)S(N-3k)J + 0(1),

where Sx(w) is the spectrum of (x(t)} and S(k) - 0 unless k - 0 when

6(0) - 1. The complex covariance between F(J,k) and F(J',k') is O(N"2 )

for J * J' or k * k' (it is O(N 1 ) for the "exclusive or" cases).

There are many ways to average the F(J,k) to obtain a consistent

estimate of the bispectrum on a lattice of points in the set D. For the

lattice L - [(2m-1)M/2,(2n-1)M/2:m,n - 1,2, ... and M - Nc for 1/2 < c <

1) in D, a simple approach is to average the F(j ,k) in a square of M
2

points centered at ((2m-1)M/2, (2n-l)M/2) if all the (j,k) are in the

domain (Fig. 1). The estimator is then

M4-1 nH-1
iX(m,n) -N2 y F(jk) (2.6)

J-(m-)M k-(n-i)H

If a square has points outside the set D, those points are not included

in the average.

If Bx (wllw 2 ) is slowly varying over a square of width 2wM/N and

SX(w) is slowly varying over a 2wM/N band, it follows from (2.4) that

EBx(m,.n)] - Bx(2w(2m-i)M/2N, 2w(2n-I)M/2N) + O(M/N). (2.7)

From (2.5), the complex variance is

VarBx(m,n) - EIx(t.,n)12 _ lB(m,n)12

N N 4QjS,(2W (2m-i)M/2N) (2.8)

SX(2w(2n-)M/2)S(2(m+n-l)M/N) + O(M/N)]



where Q is the number of (j ,k) in the square that are in D but not on the

boundaries j -'k or 2J44c - N, plus twice the number on these boundaries.

22If the square is within D, Q - M . For any square, Q > H2 /8

since the smallest set in the domain (a triangle) is for the square

centered at (0,0). Since M - Nc for 1/2<c<l, M/N+O and

NH-4Q N-2 . Nl- 2c.O as N.m. This implies that B is a co.sistent

estimator of the bispectrum at (wiw 2) as No.- for the sequence (m(N) -

[w N l- c ] , n(N) - (w2Nl'c]}, where [xi denotes the integer part of x.

The asymptotic distribution of each estimator is complex normal

since the estimator is asymptotically equal to the one analyzed by Van

Ness. Applying Theorem 4.4.2 in Brillinger (1975), the estimators are

asymptotically independent. Thus from (2.8), the distribution

of

n  (N1 4CQ)- 1 /2[Sx(2w(2m-1)M/2N)Sx (2(2n-I)M/2N)

Sx(2(m+n-1)M/N) 11/2Bx(mn) (2.9)

is complex normal with unit variance. Consequently, 2m,n[12 is

approximately chi-square with two degrees of freedom and noncentrality

parameter

-,n - 2(N1-4cQ)-lYx(m,n) > 2N2clTyx(m,n) (2.10)

where

- 2ir(2m-1)M 1 2w(2n-I)M 1 2w(m+n-l)M 2Bx (2m-l)M 2wi(2n-I)M)

x 2N x 2N x N 2N 2N



Moreover, the statistic S is approximately where
(m,n)eL

-" X .,n and P is the number of (m,n) in L. Since n - 1,...,[N/I2MJ,
(m,n)eL

P is approxiately N2/12M2.

3. Testing for Gaussianity

The statistic S is basically the Subba Rao-Gabr test statistic with

the asymptotic variance-covariance matrix instead of their sample

estimate. Under the null hypothesis, B(aa,w 2) 0, and thus S is

approximately 2 (0) for large N. This suggests the following test
2P

statistic: S - 21m'nlXmnI2 where ,n is given by (2.9) with Sx(w) replaced

by an estimate Sx(w) for each lattice frequency in the domain. If the

spectrum is estimated by averaging M adjacent periodogram ordinates

(Fuller, Sec. 7.2, 1976), then S.(w) = Sx(w)[l + (M/N)Y] where Y is

(approximately) a standard normal variate. It then follows from (2.9) that

S - S + Op(M/N), and thus the distribution of S is also approximately

X2(U) for large N. An approximate a-level test of the null hypothesis

that B(wl, 2) 0 is to reject it if S > to where a - Pr(X2 > to

If the null hypothesis is rejected, then the Gaussian assumption

must be rejected. If not, then the process may be non-Gaussian but the

data is consistent with a zero bispectrum.

I will now show that the test is consistent as N+-. For simplicity,

suppose that all the squares are in D so that Q - M2. Set

a - (2 )- 2fJf ax(,W1)Sx(w2)Sx(1 'w2) -1 tBx( 1 w2) 12dwL,,dw 2  (3.1)

where is the principal domain. From (2.10),
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p-1 Am-n 2N2c-1. + O(Nc-l)  (3.2)
(mn)CL

using the integral approximation of a sum.

This approximation of X/P will now be used to obtain the large sample

property of the power of the chi-square test. For large N and thus large P,

(2?)- 1X2P(X) is approximately normal with mean 1+(2P)-'X and variance

(2P)-2(4P+4). Thus the large sample power of the test is a monotonically

increasing function of the "signal-to--noise" ratio

P + X/2 [P(X/4P)]I/2

(aN/24)1/2 (3.3)

since P X N2(-C)/12. Thus the test is consistent. Moreover, the null

hypothesis will be correctly rejected with probability near one if

(aN/24)1/2 > 4. If a - 1, for example, then a sample size of N > 384 is

needed to achieve this somewhat conservative bound for high power.

4. Testing for Linearity

If (x(t)} is a linear process, then Sx(w) - IH(w)1 2G2 where
C

02 . Ee2(t). Thus from (2.2),
£

-6mn) 2S 06 (4.1)

for all (m,n)cL. From (2.10),
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x -1 I ([nl 2  1) (4.2)
(m,n)cL

is a consistent estimator of N2c-l x under the null hypothesis that {x(t)}

is linear. It then follows from the results in Section 2 that

S - / ( ([ 13,n - - X) (4.3)(m,n)cL

is approximately normal N(O,yx/6) under the null hypothesis. This statistic

with S. instead of S. can be used to test for linearity. The consistency

of this test follows from the large sample analysis used to show the

consistency of the S test.

5. Conclusion

Simple tests for Gaussianity and linearity of a time series have been

presented. The large sample variance and covariance of the asymptotically

normal bispectrum estimator are used to simplify the Subba Rao-Gabr test

statistics. The asymptotic properties of the statistic for testing for a

zero bispectrum have been presented. The power of this test is high when

aN is large.

-~ ~-- - ----- ---- ----
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